16 research outputs found

    Micromachining of Single Cell Array for Oxygen Consumption Rate Analysis

    Get PDF
    The Oxygen Consumption Rate of biological cells is an important parameter of cellular metabolism. In order to study the behaviour of cell populations, it becomes necessary to capture and store them in one location for analysis. Individual cell analysis within a cell group can provide useful information about the average response of the cell group, as well as identify outliers. Such analysis can be used to identify different groups of cells based on their oxygen levels. However, characterizing the individual cell response within a cell group is challenging since cell dimensions are on the order of a few micrometers. Conventional techniques, such as microtiter plates and flow cytometry, are unable to offer both the high temporal and the high spatial resolution that is required to characterize individual cells. Modern micromachining and microfabrication techniques, on the other hand, allow for the creation of devices that have dimensions that are on the order of a few micrometers. Through a series of thin film deposition, photolithography and thin film etching techniques, it is possible to create single cell trapping structures whose dimensions are only slightly larger than that of individual cells. The aim of this thesis is to create a process flow in order to fabricate such structures on a single crystalline silicon substrate using available micromachining techniques

    Micromachining of Single Cell Array for Oxygen Consumption Rate Analysis

    Get PDF
    The Oxygen Consumption Rate of biological cells is an important parameter of cellular metabolism. In order to study the behaviour of cell populations, it becomes necessary to capture and store them in one location for analysis. Individual cell analysis within a cell group can provide useful information about the average response of the cell group, as well as identify outliers. Such analysis can be used to identify different groups of cells based on their oxygen levels. However, characterizing the individual cell response within a cell group is challenging since cell dimensions are on the order of a few micrometers. Conventional techniques, such as microtiter plates and flow cytometry, are unable to offer both the high temporal and the high spatial resolution that is required to characterize individual cells. Modern micromachining and microfabrication techniques, on the other hand, allow for the creation of devices that have dimensions that are on the order of a few micrometers. Through a series of thin film deposition, photolithography and thin film etching techniques, it is possible to create single cell trapping structures whose dimensions are only slightly larger than that of individual cells. The aim of this thesis is to create a process flow in order to fabricate such structures on a single crystalline silicon substrate using available micromachining techniques

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Rare adverse effects of anti tuberculous therapy − a case series

    No full text
    Tuberculosis is prevalent throughout the world and is a major public health problem in most developing countries. Standardized and directly observed treatment under NTEP (National Tuberculosis Elimination Programme) is currently recommended for drug-sensitive pulmonary tuberculosis in India. It is generally well tolerated, with few minor side effects. Severe side effects necessitating discontinuation of therapy are rare with standard TB treatment regimens. Drug-resistant tuberculosis (DR-TB) has become more common in recent years, posing a challenge to global efforts to control the disease. Therapy for DR-TB has been associated with many adverse effects. Therefore, close monitoring of patients on DR-TB therapy is necessary to ensure that adverse effects of drugs are recognized early by healthcare personnel and treated accordingly. This will improve drug compliance and, hence, treatment goals. Here we report three cases of tuberculosis who had unusual adverse effects while receiving anti-tuberculous medication, prompting drug discontinuation

    A curious case of raised gradient across mitral bioprosthetic valve

    No full text
    High Doppler valve gradient is generally suggestive of valve thrombosis. However, it should be corroborated with the finding of restricted leaflet movement to confirm the diagnosis. In the present case, abnormally high gradient was not associated with limited leaflet movements or any valve thrombus

    Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment

    No full text
    Respiratory diseases (RD) are a group of common ailments with a rapidly increasing global prevalence, posing a significant threat to humanity, especially the elderly population, and imposing a substantial burden on society and the economy. RD represents an unmet medical need that requires the development of viable pharmacotherapies. While various promising strategies have been devised to advance potential treatments for RD, their implementation has been hindered by difficulties in drug delivery, particularly in critically ill patients. Nanotechnology offers innovative solutions for delivering medications to the inflamed organ sites, such as the lungs. Although this approach is enticing, delivering nanomedicine to the lungs presents complex challenges that require sophisticated techniques. In this context, we review the potential of novel nanomedicine-based immunomodulatory strategies that could offer therapeutic benefits in managing this pressing health condition.</p

    Balloon-borne aerosol–cloud interaction studies (BACIS): field campaigns to understand and quantify aerosol effects on clouds

    Get PDF
    A better understanding of aerosol–cloud interaction processes is important to quantify the role of clouds and aerosols on the climate system. There have been significant efforts to explain the ways aerosols modulate cloud properties. However, from the observational point of view, it is indeed challenging to observe and/or verify some of these processes because no single instrument or platform has been proven to be sufficient. Discrimination between aerosol and cloud is vital for the quantification of aerosol–cloud interaction. With this motivation, a set of observational field campaigns named balloon-borne aerosol–cloud interaction studies (BACIS) is proposed and conducted using balloon-borne in situ measurements in addition to the ground-based (lidar; mesosphere, stratosphere and troposphere (MST) radar; lower atmospheric wind profiler; microwave radiometer; ceilometer) and space-borne (CALIPSO) remote sensing instruments from Gadanki (13.45◦ N, 79.2◦ E), India. So far, 15 campaigns have been conducted as a part of BACIS campaigns from 2017 to 2020. This paper presents the concept of the observational approach, lists the major objectives of the campaigns, describes the instruments deployed, and discusses results from selected campaigns. Balloon-borne measurements of aerosol and cloud backscatter ratio and cloud particle count are qualitatively assessed using the range-corrected data from simultaneous observations of ground-based and space-borne lidars. Aerosol and cloud vertical profiles obtained in multi-instrumental observations are found to reasonably agree. Apart from this, balloon-borne profiling is found to provide information on clouds missed by ground-based and/or space-borne lidar. A combination of the Compact Optical Backscatter AerosoL Detector (COBALD) and Cloud Particle Sensor (CPS) sonde is employed for the first time in this study to discriminate cloud and aerosol in an in situ profile. A threshold value of the COBALD colour index (CI) for ice clouds is found to be between 18 and 20, and CI values for coarse-mode aerosol particles range between 11 and 15. Using the data from balloon measurements, the relationship between cloud and aerosol is quantified for the liquid clouds. A statistically significant slope (aerosol–cloud interaction index) of 0.77 found between aerosol backscatter and cloud particle count reveals the role of aerosol in the cloud activation process. In a nutshell, the results presented here demonstrate the observational approach to quantifying aerosol–cloud interactions.Geoscience and Remote Sensin
    corecore